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Abstract 3/33

The simplest set of Tokamak Magneto-Hydrodynamics (TMHD) equations, sufficient for disruption mod-
elling and expandable to more refined physics, is presented.

First, the TMHD introduces the 3-D Reference Magnetic Coordinates (RMC), which are aligned with the
magnetic field in the best possible way. Being consistent with the high anisotropy of the tokamak plasma,
RMC allow simulations at realistic, very high plasma electric conductivity and with high resolution of the
plasma edge and resonant layers.

Second, the TMHD splits the equation of motion into an equilibrium equation and the plasma advancing
equation. This resolves the 4 decade old problem of Courant limitations of the time step in existing, plasma
inertia driven numerical codes.

Third, all TMHD equations have an energy principles, which lead to equations with positively defined sym-
metric matrices, thus, providing stability of numerical schemes.

The TMHD model was used for creation of theory of the Wall Touching Kink and Vertical Modes (WTKM
and WTVM), prediction of Hiro and Evans currents, for initiation of Hiro current measurements on EAST,
for designing an innovative diagnostics for tile current measurements on NSTX-U.

While Hiro currents have explained the toroidal asymmetry in the plasma current measurements in JET
disruptions and sideways forces, the recently developed Vertical Disruption Code (VDE) have confirmed
also the generation of Evans currents, which explain the tile current measurements in tokamaks.

Numerical simulations of WTVM have challenged the 24 years long misinterpretation of experimental mea-
surements of the tile currents in tokamaks as “halo” currents, which have no even current carriers.
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1 MHD models 4/33

Equation of motion

ρ
dV

dt
= −∇p+ (j × B). (1.1)

Equation of state
dp

dt
= −γp(∇ · V),

dρ

dt
= −ρ(∇ · V). (1.2)

Ampere’s law
B = (∇ × A), µ0j = (∇ × B). (1.3)

Faraday’s law

−∂A
∂t

+ (~V × ~B) − ∇φE = ηj. (1.4)

Three levels of MHD

1. Hydrodynamics: Eq.(1.1) (without Lorentz force) and Eq.(1.2). Inertia is important.

2. MHD of liquid metals and of 3-D numerical plasma codes

3. Tokamak MHD - highly anisotropic plasma with negligible inertia.

The distance between first two is smaller than between the second and the third.
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2 Large disruption on JET (1995) 5/33

Community adopted halo current explanation have been ruled out unambiguously

8/24<Working Group> S N Gerasimov et al, Scaling JET Disruption Data to ITER. W70 7/10/09

Vessel current during VDE, #38070

Oct. 3 - Oct.7

Differences

DDDDMIZ

DDDDIpla

Oct.7                              Oct. 3

•In octant 7 the plasma is closer to top of the 

vessel than in octant 3. 

•The current from plasma flows on vessel 

in octant 7.

Ipla, Oct. 3 Oct.7

MIZ =Ip Z   Oct. 3 Oct.7

Z, Oct. 3 Oct.7

#38070 VDE [3,4], upwards

The measured Ipla in octant 7 is higher then in octant 3 ����

the missing vessel current in octant 7 is OPPOSITE to Ipla!

The “halo” current based interpretation predicts the opposite sign of asymmetry

in the current measurement and contradicts JET Ipla’s.
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Force balance versus plasma inertia in disruptions 6/33

Duration of m/n=1/1 perturbation ≃ 25 ms

Plasma parameters:

ne 3 · 1019 plasma density

ξ 0.3 m amplitude of the perturbations

V 90 m3 volume of the vacuum chamber

Force of plasma inertia

Fa≃ mini · V · 2ξ

(∆t)2

≃ 2 · 1.7 · 10−27 · 3 · 1019 · 90 ·
0.6

625 · 10−6

≃ 0.009 [N ].

(2.1)

The measured value of the sideways force in this shot is

2.4 MN = 2.4·106 N ≫ 0.009 [N]

• All existing 3-D codes are essentially hydrodynamic codes, driven by plasma inertia.

• Ignoring reality 3-D numerical codes pretend to simulate the tokamak plasma.

• Some of them (M3D) claim that they simulate disruptions and the sideways force in
ITER. The trick M3D uses is a hidden enhancement of ITER 15 MA current to the level
of 24 MA !!! and thus exposing the benign internal kink mode or m/2 = 2/1 as the
reason of forces.
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Force balance was described by theory of WTKM in 2007 7/33

Hiro current theory has amazing consistency with experiment in the sign
of the effect and its time dependence. No tricks are necessary.
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(a) Plasma currents I3,7 in octants 3,7 on JET during the disruptions.
(b) Z7 − Z3 and R7 −R3, I7 − I3 and its prediction −Isurf from the present theory.

Isurfest ≃ −a
4Bϕ

R0µ0

δZ7,3

2
≪ Isurf , Z7,3 ≡

1

µ0Ipl

∮

fBτdl ≃
1

2
zp,7,3,

µ0~ı11 = −2ξ11
Bϕ

R

(

eϕ +
a

R
eθ

)

, IHiro ≃ Isurf = −4aξ11
Bϕ

Rµ0

.

(2.2)

Leonid E. Zakharov, PPPL Theory Seminar, November 13, 2014, Princeton, NJ

THEORY
PPPL



TMHD model: plasma & vacuum [& tiles] & wall 8/33

Duration of m/n=1/1 perturbation ≃ 25 ms. Where the wall currents are coming from ?

Plasma parameters:

ne 3 · 1019 - core plasma density

V 90 m3 - volume of the vacuum chamber

Total electric charge in plasma particles

Q ≃ 2 · ne · V · 1.6 · 10−19 = 3.2 · 3 · 1019 · 90 · 10−19 = 864 [A · s]. (2.3)

The electric charge of the shadow plasma is at least two orders of magnitude smaller
than this number.

The measured charge carried by the currents from the plasma to the wall on JET
∫
(I7 − I3)dt = 4350 A-s !!!

There is no way to explain the tile currents in tokamaks by “halo” currents from the
shadow plasma. They are not necessary for MHD dynamics and are negligible.

All currents to the tiles are coming from the plasma edge or the Scrape Off Layer estab-
lished when the plasma touches the tiles. These currents (Hiro and Evans) are attributes
of MHD - the instability acts as a current generator.
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3 Macroscopic Tokamak MHD (TMHD) 9/33

The TMHD model utilizes the following properties of disruptions

τMHD ≃ R

VA
=

R

2.18 · 106B/
√
n

︸ ︷︷ ︸
<1 µs

≪ τTMHD︸ ︷︷ ︸
≃1 ms

≪ τtransport
︸ ︷︷ ︸

≃0.1 s

≪ τresistive︸ ︷︷ ︸
≃1 s

(3.1)

1. During disruptions plasma conserves magnetic fluxes. As a result, singular currents
are generated at the plasma boundary and at the resonant surfaces (for n 6= 0)

2. The macroscopic tokamak plasma dynamics is driven by a small imbalance of large
forces, which are much bigger than the plasma inertia. Plasma inertia is negligible
(except along the resonant layers).

• TMHD considers the disruption dynamics as a fast equilibrium evolution with conser-
vation of magnetic fluxes and with singular currents.

• At the same time TMHD provides the scale separation, suitable for interfacing with
the non-MHD physics of singular layers and plasma edge.
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Plasma anisotropy and adaptive grids 10/33

High plasma anisotropy is the critical property of tokamaks plasma, which distinguish it
from liquid metals or salt water.

TMHD expresses the anisotropy in a very simple manner, consistent with the high tem-
perature plasma

( ~B · ∇Te) ≃ 0 → ( ~B · ∇σ) = 0, (3.2)

σ = σ(Te) is the electric conductivity.

High plasma anisotropy makes the REAL plasma behaving as ideally conducting. I fact,

tokamaks are microscopically stable exclusively because of high plasma anisotropy

The hydro-dynamic numerical codes cannot implement Eq. (3.2): the problem of large ’S’.
They hide the problem into the mess of “Extended MHD”, which adds a train of irrelevant
to dynamics terms, starting from heat conduction.

In contrast, TMHD requires adaptive grids, aligned with magnetic field:

1. The separation of physics scales is automatic.

2. The interface with the non-MHD physics of resonant layers is easy.

3. In particular, any ’S’ parameter of existing or future devices can be simulated: the

higher is ’S’ the better is the accuracy of TMHD
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4 Curvilinear toroidal coordinates and metric tensor 11/33

Coordinates a, θ, ζ are nested.

Nested magnetic surfaces are not required. May be ergodic.

If cylindrical coordinates are specified, e.g., by spline representation,

r = r(a, θ, ζ), ϕ = ϕ(a, θ, ζ), z = z(a, θ, ζ), (4.1)

the element of the length

dl2 = gaada
2 + 2gaθdadθ + 2gaζdadζ + gθθdθ

2 + 2gθθdθdζ + gζζdζ
2 (4.2)

allows the calculations of the metric tensor

gaa = r′2a + z′2a + r2ϕ′
a, gaθ = r′ar

′
θ + z′az

′
θ + r2ϕaϕ

′
ζ, gaζ = r′ar

′
ζ + z′az

′
ζ + r2ϕaϕ

′
ζ,

gθθ = r′2θ + z′2θ + r2ϕ′
θ, gθζ = r′θr

′
ζ + z′θz

′
ζ + r2ϕθϕ

′
ζ, gζζ = r′2ζ + z′2ζ + r2ϕ′

ζ.
(4.3)

The Jacobian J =
√
g of the metric tensor can be calculated in a straightforward manner

J =
√
g ≡ D(r, ϕ, z)

D(a, θ, ζ)
. (4.4)

For the case when ζ = ϕ the Jacobian has a form, similar to the two dimensional case

√
g = rD, D ≡ −D(r, z)

D(a, θ)
. (4.5)

Important combinations of the metric tensor

M ≡
gaa

J
, N ≡

gaθ

J
, K ≡

gθθ

J
, M̃ ≡

gaζ

J
, Ñ ≡

gθζ

J
, Q ≡

gζζ

J
. (4.6)
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Simplest representation of confinement magnetic fields 12/33

From the property of ∇ · ~B = 0, the magnetic field can be expressed in terms of a vector
potential ~A

~B = (∇ × ~A). (4.7)

Its covariant representation in a curvilinear coordinates a, θ, ζ

~A = Aa∇a+Aθ∇θ +Aζ∇ζ + ∇u. (4.8)

Utilization of freedom in the choice of u(a, θ, ζ) gives the most compact form of the

vector potential ~A in a given coordinate system

~A = −Φ̄′η∇a+ (Φ̄ + φ)∇θ + (Ψ̄ + ψ)∇ζ,

Φ̄ = Φ̄(a), φ = φ(a, ζ), Ψ̄ = Ψ̄(a), η = η(a, θ, ζ), ψ = ψ(a, θ, ζ).

(4.9)

The transformation of angles

θ = θ̄ +
Φ̄′

Φ̄′ + φ′
a

η, ζ = ζ̄, (4.10)

leads to the following representation of the vector potential

~A = ∇
(
Φ̄′φ+ Φ̄φ′

a

Φ̄′ + φ′
a

η

)

+ (Φ̄ + φ)∇θ̄ +

(

Ψ̄ + ψ −
Φ̄′φ′

ζ̄

Φ̄′ + φ′
a

η

)

∇ζ̄. (4.11)

The first term can be dropped

~A = (Φ̄ + φ)∇θ̄ +

(

Ψ̄ + ψ −
Φ̄′φ′

ζ̄

Φ̄′ + φ′
a

η

)

∇ζ̄, (4.12)

thus, making a, θ̄, ζ̄ “straight field lines” coordinates in an imperfect confinement field.
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5 3-D Reference Magnetic Coordinates (RMC) 13/33

RMC simplify ~A by massaging toroidal coordinate surfaces

an+1 = an + ξ. (5.1)

The goal is to eliminate the normal component of the magnetic field Ba

( ~B · ∇(a+ ξ)) = 0, ( ~B · ∇ξ)n+1 = −Ba,n. (5.2)

The φ, ψ terms in ~B in the left hand side are neglected as the higher order corrections.

The equation for ξ is reduced to a magnetic differential equation (MDE) for ξ

J( ~B · ∇ξ) = Φ̄′(1 + η′
θ)ξ

′
ζ − (Ψ̄′ + Φ̄′η′

ζ)ξ
′
θ = φ′

ζ − ψ′
θ. (5.3)

MDE can be solved in Fourier space

θ̄ ≡ θ + η,

ξ =
∑

ξmn(a)e
imθ̄−inζ, ψ =

∑

ψmn(a)e
imθ̄−inζ, φ =

∑

φn(a)e
−inζ.

(5.4)

This gives

(mΨ̄′ + nΦ̄′)ξmn = mψmn − δ0mnφn, ξm′n′ =
m′ψm′n′ − δ0m′n′φn′

m′Ψ̄′ + n′Φ̄′ , (5.5)

where m′, n′ are non-resonant harmonics. The resonant harmonics are ignored

ξm∗n∗ = 0 (5.6)
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A Newton scheme for building RMC 14/33

The RMC are generated by advancing the coordinate system using

exclusively non-resonant components of ξ and
ignoring the resonant terms.

RMC are denoted as ā, θ, ζ.

As a result of successive application of this Newton algorithm, the coordinate system is
deformed a → ā in a such way, that the vector potential acquires the simplest represen-
tation, achievable without massaging the angles of coordinates.

~A = −Φ̄′η∇ā+ Φ̄(ā)∇θ + Ψ̂∗∇ζ,

Ψ̂∗ ≡ Ψ̄(a) + ψ∗, ψ∗ =
∑

m∗n∗
ψm∗n∗(ā)eim

∗θ̄−in∗ζ,
(5.7)

where ψ∗ contains only resonant terms.

In straight field line coordinates ā, θ̄, ζ̄

~A = Φ̄(ā)∇θ̄ + Ψ̂∗∇ζ̄,

Ψ̂∗ ≡ Ψ̄(ā) + ψ∗, ψ∗ =
∑

m∗n∗
ψm∗n∗(ā)eim

∗θ̄−in∗ζ̄,
(5.8)
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Magnetic islands in RMC 15/33

The resonant terms in ψ∗ produce magnetic islands.

The following local flux function Ψ̂∗
mn determines the nested surfaces around the reso-

nant magnetic field lines:

Ψ̂∗
nm ≡ Ψ̄∗

mn +
(

ψ∗
mne

imθ̄−inζ + c.c.
)

= const, Ψ̄∗
mn ≡ Ψ̄ +

n

m
Φ̄. (5.9)

It is straightforward to show that

( ~B · ∇Ψ̂∗
mn) = 0 (5.10)

and, thus, there is no normal component of the magnetic field to the surfaces Ψ̄∗
n,m =const.

The expansion of Ψ̂∗
mn near the resonant point āmn, where Ψ̄′∗

mn = 0,

x ≡ ā− āmn, Ψ̂∗
nm = Ψ̄∗

mn +
1

2
Ψ̄′′∗
mnx

2 + 2|ψ∗
mn| cosmβ, β ≡ θ −

n

m
ζ + α, (5.11)

determines the island geometry

x2 =
2(Ψ̂∗

nm − Ψ̄∗
mn)

Ψ̄′′∗
mn

−
∣
∣
∣
∣

4ψ∗
mn

Ψ̄′′∗
mn

∣
∣
∣
∣
+

∣
∣
∣
∣

8ψ∗
mn

Ψ̄′′∗
mn

∣
∣
∣
∣







sin2 mβ

2
, for Ψ̄′′∗

mn > 0

cos2
mβ

2
, for Ψ̄′′∗

mn < 0

. (5.12)

This gives the following value for the island width Wmn

Wmn = 2wmn = 4

√∣
∣
∣
∣

2ψ∗
mn

Ψ̄′′∗
mn

∣
∣
∣
∣
, Ψ̄∗

mn = Ψ̄ +
n

m
Φ̄. (5.13)
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6 The set of TMHD equations 16/33

TMHD is presented by the following set of equations

1. Equation of motion is split into an equilibrium equation

∇p = (~× ~B), Ψ̄ = Ψ̄(Φ̄), (6.1)

and plasma boundary advancing equation

λ~ξ = − F̄
r2

∇F̃ ,
(

∇ · F̄
2

r4
∇F̃

)

= 0. (6.2)

2. Faraday’s (Ohm’s) law (the resistive part of TMHD)

−∂
~A

∂t
−∇ϕE + (~V × ~B) =

~pl

σpl
, ~V ≡ d~ξ

dt
. (6.3)

3. Plasma anisotropy

σ=σ(Φ̄), ( ~B · ∇) ≃ 0. (6.4)

4. boundary condition at the wall

~Epl
‖ =~Ewall

‖ =
~pl

σpl
− (~V × ~B) =

~wall

σwall
. (6.5)

Force balance across the free plasma surface
(

p+
| ~B|2
2µ0

+
F̄ F̃

r2µ0

)

i

=

(

| ~B|2
2µ0

)

e

, (6.6)

where subscripts ’i, e’ specify the inner and outer sides of the plasma surface.
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6.1 The physics behind TMHD 17/33

• Flux conserving equilibrium evolution automatically generates the surface currents
(mostly in toroidal direction) at the plasma-vacuum interface

• The plasma core is kept in equilibrium, but there is a force acting on the surface
currents.

• In response the plasma generates poloidal currents δ~pol which enters the plasma
boundary normally and create and additional surface currents.

• As a result, the total surface current (including poloidal current distribution) becomes
force-free.

• The (δ~ × ~B) force in the core is balanced by a plasma inertia (or by friction force in
TMHD model).

• Two first equations of TMHD determine a unique sequence of equilibrium configu-

rations, independent on the plasma resistivity or plasma-wall interactions

This is a very important property for comparison with experiments and revealing the
non-ideal plasma properties.

• It is Faraday’s law which determines the time moment for each configurations.

The proper splitting of MHD equation of motion eliminates very restrictive Courant

condition for the time step in MHD simulations.

It also allows the use of plasma inertia in the plasma advancing equation without

limitations of the time step.
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6.2 Plasma advancing equation 18/33

In TMHD, the “equation of motion” (6.2) is treated in an approximate way, assuming small
plasma deformation δa with respect to the major radius r

(
δa

r

)2

≪ 1,

(
∂

∂ζ

)

≪
(
∂

∂θ

)

,

(
∂

∂ζ

)

≪ a

(
∂

∂a

)

. (6.7)

This approximation may slightly affect the shape of the plasma but keeps all physics
effects related to disruptions.

The perturbed current density in TMHD is given by

δ~ = (∇F̃ × ∇ζ). (6.8)

The associated Lorentz force

(δ~× ~B) ≃
(

(∇F̃ × ∇ζ) × (JBζ(∇a× ∇θ))
)

≃ −Bζ∇F̃ ≃ −
F̄

r2
∇F̃ . (6.9)

The perturbation of F̃ is determined by the condition that the virtual plasma displacement
~ξ does not perturb the toroidal magnetic field at the level larger than it was considered
for the Lorentz force.

B̃tor = (∇ × (~ξ × ~B))tor = 0,

(

∇ · F̄
r2
~ξ

)

= −
(

∇ · F̄
2

r4
∇F̃

)

= 0 (6.10)

The approximations here are used exclusively for describing the inertial term, which in
reality is small and does not need excessive precision. It simply determines a relax-
ation process (one of them) for finding the final equilibrium which evolves at intermediate
resistive-inertial time scale.
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6.3 3-D equilibrium in the Grad-Shafranov form 19/33

The contravariant components of ~B

Ba =
ψ′
θ − φ′

ζ

J
, Bθ = −

Ψ̄′ + ψ′
a + Φ̄′η′

ζ

J
, Bζ =

Φ̄′(1 + η′
θ) + φ′

a

J
(6.11)

and the covariant components of the magnetic field

~B ≡ −ν∇a + Ĵ∇θ + F̂∇ζ + ∇σ, Ĵ = Ĵ(ā, ζ). (6.12)

Covariant components can be expressed in terms of components of the vector potential

Ba = M(ψ′
θ − φ′

ζ) −N(Ψ̄′ + ψ′
a + Φ̄′η′

ζ) + M̃ [Φ̄′(1 + η′
θ) + φ′

a],

Bθ = N(ψ′
θ − φ′

ζ) −K(Ψ̄′ + ψ′
a + Φ̄′η′

ζ) + Ñ [Φ̄′(1 + η′
θ) + φ′

a],

Bζ = M̃(ψ′
θ − φ′

ζ) − Ñ(Ψ̄′ + ψ′
a + Φ̄′η′

ζ) +Q[Φ̄′(1 + η′
θ) + φ′

a].

(6.13)

Ampere’s law determines components of ~A, given the current density

∂

∂a

[

M̃(ψ′
θ − φ′

ζ) − Ñ(Ψ̄′ + ψ′
a + Φ̄′η′

ζ) +Q(Φ̄′(1 + η′
θ) + φ′

a)
]

− ∂

∂ζ

[

M(ψ′
θ − φ′

ζ) −N(Ψ̄′ + ψ′
a + Φ̄′η′

ζ) + M̃(Φ̄′(1 + η′
θ) + φ′

a)
]

= F̂ ′
a + ν′

ζ,

∂

∂a

[

N(ψ′
θ − φ′

ζ) −K(Ψ̄′ + ψ′
a + Φ̄′η′

ζ) + Ñ(Φ̄′(1 + η′
θ) + φ′

a)
]

− ∂

∂θ

[

M(ψ′
θ − φ′

ζ) −N(Ψ̄′ + ψ′
a + Φ̄′η′

ζ) + M̃(Φ̄′(1 + η′
θ) + φ′

a)
]

= Ĵ ′
a + ν′

θ,

(6.14)

which determine the combinations of the unknowns Ψ̄(a)+ψ(a, θ, ζ),Φ̄(a)+φ(a, ζ) and
η(a, θ, ζ) given the right hand side Ĵ(a, ζ), F̂ (a, θ, ζ), ν(a, θ, ζ).
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6.4 Radial force balance outside islands 20/33

The current density at each iteration is specified in RMC, which determine island widths.

Force balance between islands (here, for simplicity we use the SFL coordinates):

p̄′
√
g = (J̄ ′ + νθ̄)Ψ̄

′ − (F̄ ′ + νζ̄)Φ̄
′. (6.15)

(In RMC the termψ∗ can be made small and we neglect it in the force balance equation.)

It can be split into the averaged

J̄ ′Ψ̄′ − F̄ ′Φ̄′ = p̄′ (
√
g)0 (6.16)

and the oscillatory MDE equation for ν

Ψ̄′νθ̄ − Φ̄′νζ̄ = p̄′[
√
g − (

√
g)0] = p̄′

∑

m,n

(
√
g)mne

imθ̄−inζ̄, (6.17)

which can be solved in Fourier space as it was described earlier in Eqs. (5.4-5.5)

ν̄ ≡
∑

m,n

νmne
imθ̄−inζ̄, ν̄mn = −ip̄′

(
√
g)mn

mΨ̄′ + nΦ̄′ . (6.18)

Given p̄′(ā), J̄(ā), these equations determine the RHS for Ampere’s law equations out-
side the islands

(∇ × (∇ × ~A)) = −µ0~. (6.19)
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6.5 Equilibrium current density near the islands 21/33

In the vicinity of the islandm,n the shape of magnetic surfaces is described by function
Ψ̂∗
mn(ā, θ̄, ζ). The local flux coordinate χ inside the island Ψ̂∗

mn = Ψ̂∗
mn(χ)

χ2 =
2(Ψ̂∗

nm − Ψ̄∗
mn)

Ψ̄′′∗
mn

+
w2

2
, w2 =

∣
∣
∣
∣

8ψ∗
mn

Ψ̄′′∗
mn

∣
∣
∣
∣
, (6.20)

determines the geometry of the flux surfaces x ≡ ā− ā∗ by

x2 = χ2 − w2 + w2







sin2 mβ

2
, for Ψ̄′′∗

mn > 0,

cos2
mβ

2
, for Ψ̄′′∗

mn < 0

. (6.21)

In order to describe the equilibrium current density in the vicinity of the island it is nec-
essary to introduce a local poloidal coordinate

θ̂ ≡ θ −
n

m
ζ,

(

Ψ̄′ ∂

∂θ
− Φ̄′ ∂

∂ζ

)

ā=ā∗
θ̂ = 0. (6.22)

The equilibrium current density near the island has no normal component to the island
magnetic surface Ψ̂∗

mn =const. Accordingly, it can be represented as

~̄ = (∇F̂ ∗ × ∇ζ) + (∇Ĵ∗ × ∇θ̂),
Ĵ∗ = Ĵ∗(χ, θ̂) = J̄∗(χ) + ν∗(χ, θ̂), F̄ ∗ = F̄ ∗(χ, ζ̄).

(6.23)

Together with the given plasma pressure p̄ = p̄(χ) this determines the current density in
vicinity of the islands.
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7 Electro-magnetic model of the wall in TMHD 22/33

TMHD intends to reproduce the current sharing effect (e.g., Hiro and
Evans currents) between the plasma and the wall during disruptions.

Thin wall approximation is reasonable for wall modeling. 3-D geometry of the wall is
essential.

Two components in the surface current density h~ (h is the thickness of the current
distribution):

h~ = ~ı− σ̄∇φS. (7.1)

1. divergence free Hiro/eddy current: ~ı ≡ ∇I × ~n

2. plasma sink/source (Evans) current −σ̄∇φS, σ̄ ≡ hσ

(Here I is the stream function, φS is the plasma source potential, σ is electric conductivity of the wall.)

Current sharing equation

(∇ · (h~)) = −(∇ · (σ̄∇φS)) = −j⊥, (7.2)

(where j⊥ is the density of the current coming from/to the plasma.)

Inductance equation for eddy currents

−∂
~A

∂t
− ∇φE = η̄(∇I × ~n) − ∇φS, η̄ ≡ 1

σ̄
(7.3)

is decoupled from the current sharing

(∇ · (η̄∇I)) =
∂B⊥

∂t
=
∂(Bpl

⊥ +Bcoil
⊥ +BI

⊥ +BS
⊥)

∂t
. (7.4)
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8 Energy functionals for TMHD equations 23/33

It is remarkable that each of all TMHD equations has its own energy principle leading to

a positively defined symmetric matrix if expressed in terms of finite elements.

3-D equilibrium (3-D Hermit elements, block tri-diagonal)

W ~× ~B≡1

2

∫
(

| ~B|2
2µ0

− ( ~A · ~)
)

d3r

≡ 1

2µ0

∫ {

K(Ψ̄′ + ψ′
a + Φ̄′η′

ζ)
2 − 2N(Ψ̄′ + ψ′

a + Φ̄′η′
ζ)(ψ

′
θ − φ′

ζ) +M(ψ′
θ − φ′

ζ)
2

+Q(Φ̄′ + φ′
a + Φ̄′η′

θ)
2 − 2Ñ(Ψ̄′ + ψ′

a + Φ̄′η′
ζ)(Φ̄

′ + φ′
a + Φ̄′η′

θ)

+2M̃(ψ′
θ − φ′

ζ)(Φ̄
′ + φ′

a + Φ̄′η′
θ) − (Φ̄ + φ)F̂ ′

a + (Ψ̄ + ψ)(Ĵ ′
a + ν′

θ)
}

dadθdζ.

(8.1)

Plasma advancing (3-D Hermit elements, block tri-diagonal)

W F=
1

2

∫

F̄ 2
gaaF̃ ′2

a + 2gaθF̃ ′
aF̃

′
θ + gθθF̃ ′2

θ + 2gaζF̃ ′
aF̃

′
ζ + 2gθζF̃ ′

θF̃
′
ζ + gζζF̃ ′2

ζ

r4
Jdadθdζ. (8.2)

Faraday’s law (3-D Hermit elements, block tri-diagonal)

W t =
1

2

∫ {
∂

∂t

(

KBθBθ + 2M̃BθBζ +QBζBζ
)

+ ηpl
(

Kjθjθ + 2M̃jθjζ +Qjζjζ
)}

d3r. (8.3)

Sink/source wall current from the plasma (triangle based wall model, sparse matrix)

W S =

∫
{

σ̄(∇φS)2
2

+ j⊥φ
S

}

dS − 1

2

∮

φSσ̄[(~n× ∇φS) · d~l]. (8.4)

Eddy currents (triangle based wall model, stationary matrix)

W I ≡
1

2

∫
{

∂(~ı · ~AI)

∂t
+ η̄|∇I|2 + 2

(

~ı ·
∂ ~Aext

∂t

)}

dS −
∮

(φE − φS)
∂I

∂l
dl. (8.5)
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8.1 Numerical scheme of TMHD (used in 2-D EEC&VDE) 24/33

By appropriate enumeration, for both 2- and 3-D cases, the resulting matrix can repre-
sented as a block-tri-diagonal cycle matrix

This structure can be utilized for developing an efficient direct solver

• First, a block-tri-diagonal algorithm was implemented as a first solver of matrix equa-
tion

• Second, faster Cholesky decomposition scheme was developed to utilize advantages
of matrix structure

A = LL
T
. (8.6)

A0

A1

A2

=
L

×

LT

Original matrix L factor L
T

factor

EEC uses the same ESC algorithm, ξΨ̄′
0 = −ψ, for grid advancing
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8.2 Free-boundary equilibria with ESC-EEC 25/33

ESC-EEC can calculate free-boundary equilibria in both r − z and flux coordinates

The Equilibrium Spline Interface (ESI) is developed for equilibrium codes

instead of present mess in interfacing

z EqRcnstr

r  1.5     2   2.5     3

   -1

    0

    1

I=0

I=0

Ip=1.000000 [MA] z EqRcnstr

r  1.5     2   2.5     3

   -1

    0

    1

I=0

I=0

Ip=1.000000 [MA] z EqRcnstr

r  1.5     2   2.5     3

   -1

    0

    1

I=0

I=0

Ip=1.000000 [MA] z EqRcnstr

r  1.5     2   2.5     3

   -1

    0

    1

I=0

I=0

Ip=1.000000 [MA]

(a) ID=00,1,00,00,00 (b) ID=00,01,00,00,00 (c) ID=00,40,00,00,23 (d) ID=00,40,00,00,23

Examples of EAST free boundary equilibrium configurations with (a,c) single and (b,d) double null separa-

trixes calculated by ESC-EEC.

a),b) Interface IDs for equilibria with r − z coordinate data;

(c),d) ESI IDs for equilibria with the core, edge and vacuum flux coordinate data
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8.3 TMHD in vertical disruptions 26/33

In tokamaks, the plasma is always “separated” from the wall based on Ψpl,ΨX,ΨWall.

The presence of the wall does not affect VDE significantly

PFC tiles

PFC tiles

wall, B =0n
~

Negative surface current

PFC tiles

PFC tiles

wall, B =0n
~

Negative surface current

PFC tiles

PFC tiles

wall, B =0n
~

Hiro current along tiles

Evans
currents
to tiles

Initial plasma displacement Negative surface current at the leading
edge

Hiro, Evans currents, formation of two
Y-points

Predicted by the TMHD theory

(a) surface currents at the plasma boundary

(b) Hiro currents along the tile surface in the toroidal direction

(c) Evans currents from the plasma edge to the tile surface

are well reproduced by the new VDE code.
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Intermediate equilibrium maintained by the Hiro currents27/33

PFC tiles

PFC tiles

wall, B =0n
~

Hiro current along tiles

Evans
currents
to tiles

PFC tiles

wall, B =0n
~

Hiro currents

Evans
currents
going to tiles

Evans currents No place for halo
"currents" !!!

Hiro currents apply the force to tiles Evans currents. No place for fake
“halo” currents
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Plasma shrinking due to decay of Hiro currents 28/33

PFC tiles

PFC tiles

wall, B =0n
~

0.9 S

Plasma shrinking

Hiro current along tiles

Evans
currents
to tiles

PFC tiles

PFC tiles

wall, B =0n
~

0.8 S

Plasma shrinking

Hiro current along tiles

Evans
currents
to tiles

PFC tiles

PFC tiles

wall, B =0n
~

0.7 S

Plasma shrinking

Hiro current along tiles

Evans
currents
to tiles

PFC tiles

PFC tiles

wall, B =0n
~

0.5 S

Plasma shrinking

Hiro current along tiles

Evans
currents
to tiles

PFC tiles

PFC tiles

wall, B =0n
~

0.25 S

Plasma shrinking

Hiro current along tiles

Evans
currents
to tiles

PFC tiles

PFC tiles

wall, B =0n
~

0.1 S

Plasma shrinking

Hiro current along tiles

Evans
currents
to tiles
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TMHD challenges the community regarding tile currents 29/33

The physics of VDE was significantly confused in 1991 (Strait et al, Nucl. Fus. 1991)
where currents to the tiles were discovered.

The misuse of EFIT reconstruction code led to misinterpretation of these electric cur-
rents as “halo” currents.

Figure 1: EFIT reconstruction of plasma configuration in VDE

Despite of wide acceptance by fusion community, the physics picture supporting the
halo-current interpretation was never established.

In fact, the model is in strong contradiction with every direct measurement (JET, EAST).

Evans currents, predicted by TMHD, rather than ghost of

“halo” currents, are the tile currents measured by experiment.
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VDE simulations motivate innovative diagnostics 30/33

We suggested a comprehensive set of innovative tile diagnostics for Hiro, Evans and SoL
current measurements on NSTX-U

Hiro, Evans, SoL currents tile diagnostics

Xiong tiles
for Hiro currents

Hiro
currents

Evans & SoL currents
profile sensors
(8 tiles)

Evans & SoL currents
-phase sensors

(4 tiles)
ϕ

Tile sensors for measuring Hiro, Evans, and

SoL currents and different kinds of diagnos-

tics including

1. Hiro current diagnostics

2. Evans current profile diagnostics with

enhanced radial resolution

3. Evans current ϕ-phase diagnostics

4. SoL current measurements

Evans currents carry important information on plasma-PFC interactions, never touched
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VDE code for EAST 31/33

Vac Chamber Vac Vessel Heat Sinks/Stabilizers 1/16 sector (8728) tri. C PFC tiles

PFC tiles

Hiro current zone

In simulations plasma generate the Hiro currents in the same locations as Hiro current
measurements.
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9 TMHD and progress in disruption understanding 32/33

TMHD model was initiated and validated in 2007 by a creation of theory of Hiro currents,

which explained the plasma current asymmetry in JET disruptions

This progress was not matched by numerical simulations, which fell short in addressing the practical
needs of the next step fusion device ITER in resolving the disruption problem.

Now it became clear that it is not possible to move forward based on hydro-dynamic approaches of the
present numerical codes. The deceptive practice of M3D simulations is an extreme example of their failure.

TMHD puts numerical simulations into consistency with theoretical understanding and experimental ob-
servations.

1. Reference Magnetic Coordinates resolve the long standing problem of practical coordinates for stochas-
tic and ergodic magnetic fields. They establish the numerical consistency with high anisotropy of the
tokamak plasma.

2. TMHD makes proper consideration of the equation of motion for plasma and resolves the long standing
problem in MHD codes related to Courant limitation of the time step.

3. The TMHD model contains a reasonably realistic wall model and (a) eddy and (b) additional sink/source
currents

4. All partial differential equations of TMHD have energy functionals, leading to efficient and stable com-
putations, suitable for the use of GPU.

5. TMHD predicts a unique sequence of equilibrium configurations, which would help to reveal the
physics of the plasma edge and plasma-wall interactions.

TMHD gives the science based explanation of tile currents,

measured in tokamaks during VDE, as the Evans currents

Upon necessity (for plasma control or reconstruction purposes), TMHD equations can be
solved in r, φ, z coordinates with use of RMC for specification of current density only.
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10 Summary 33/33

TMHD model finally addresses the long term overdue problem of developing numerical MD

codes for the high temperature tokamak plasma: 2D ESC-EEC, VDE, DSC are operational

Basics TMHD was understood in 2007:

• Any plasma deformation excites the sur-
face currents at the plasma

• Plasma goes to a slowdown evolution when
negative surface currents are converted
into as Hiro currents at the wall

• Wall Touching Kink and Vertical Modes are
introduced into theory
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m/n=1/1 surface currents
Wall Touching Kink Mode
(JET)

Surface currents in
VDE

Successes of TMHD:

• 100 % success in explanation of the sign of
toroidal asymmetry δIpl in plasma current
in JET VDE

• Prediction of Hiro currents in axisymmetric
Vertical Disruption Event (VDE)

• Design of a special tile diagnostics and first
measurements of Hiro currents in VDE on
EAST.

• Dismissal of halo” currents and Evans cur-
rents based of VDE measurements in toka-
maks
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The EAST measurements have confirmed the critical prediction of TMHD:

Plasma motion to the plates is necessary for excitation of Hiro currents
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